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E S T I M A T I O N  O F  T H E  T W O - P H A S E  F L O W  O N  A 

H O R I Z O N T A L  S M O O T H  P L A T E  I N  T H E  L A M I N A R  

A N D  T R A N S I E N T  R E G I O N S  

I. P. Faddeev and V. A. Palkin 

The flow of thin liquid films set in motion by a vapor flow over a smooth horizontal surface has been 

estimated. Shear stresses are calculated by a gridpoint method for laminar smooth, laminar wavy, and 

transient regions of the flow. The calculations are compared with experimental measurements of shear 

stresses on the plate. Reasonable agreement between the calculations and the experiments has shown that 

the method suggested can be used for solution of a wide range of applied problems. 

Two-phase working fluids are widely used [1, 2] in power units, apparatus of chemical engineering, and 

various kinds of facilities of advanced technology. Two-phase flows of working fluids in continuous-flow sections 

of heat exchangers and components of engines are accompanied by settling of thin liquid films on surfaces in the 

flow [2 ]. Attempts to reduce the size of apparatus and engines have led to increases in the velocities of the vapor 

component of the flows. The presence of the liquid film on shaped surfaces and elements of continuous-flow sections, 

most frequently calculated from equations of single-phase gas dynamics, is a source of additional losses of energy 

by the working fluid and it changes the conditions of heat and mass transfer and the flow pattern over the shaped 

surfaces. 

A large number of works, which have been surveyed in [1-12], concern flow of smooth and waw thin 

liquid films that are set in motion by a high-velocity vapor flow or that run down over solid surfaces under the 

action of gravity. Studies of sea waves have contributed much to investigation of wave motions on a water surface. 

However, extension of experimental and theoretical findings obtained for sea waves to estimation of wave processes 

on the surface of thin films covered by capillary waves is inadequate and gives substantial errors. 

In the single-phase gas dynamics of turbomachines simulation by "sand" roughness is widely used for 

estimation of losses due to roughness of surfaces in the flow. However, according to [7 ], substitution of a "sand" 

or corrugated rigid surface for the wave spectrum [5 ] results in approximately twofold overestimation of velocities 

in the wall layer. Therefore, this substitution can be valid only for estimation in a first approximation. 

Survey [8 ] is devoted to mathematical modeling of two-phase flows in channels and boundary layers with 

consideration of various models of two-phase mixtures. A detailed relevant biography is given there. 

As far as the number of theoretical and experimental publications, motion of smooth and wavy films is one 

of the most thoroughly developed branches of two-phase fluid mechanics. However, the observed great variety of 

wave flow patterns in the surface layer of films and different patterns of capillary wave motions [8, 10] continue 

to attract attention to theoretical and experimental investigation of the motion of liquid films and gas flows over 

wavy surfaces [3-6 ]. 

Calculation of blade passages, in particular, in wet-steam (WS) turbines working with two-phase flows and 

turbomachines with liquid film cooling, requires representative estimation of velocities of the steam components of 

the flow over the moisture film on shaped surfaces of a passage. Recent studies [9 ] have demonstrated the need 

for special rational shaping of the surfaces of nozzle vanes and rotor blades of WS or two-phase liquid-metal turbine 
stages. Experimental and theoretical techniques have been developed for rational shaping of turbine blade passages 
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[7, 9 ]. Estimation of the initial conditions of two-phase flows with a moisture content up to 8 - 1 5 %  requires 

substantiated calculation of a two-phase film-droplet wall layer and determination of the velocity of the steam 

component on the external boundary of the flowing film. The need to use experimental quantities, for example, 

the coefficients of friction of the steam flow over the wavy film, is caused by a large number  of factors that affect 

the steam-film flow in the wall layer. 

For estimation of the shear stresses of the steam flow on the surface of a laminar liquid film, calculations 

were carried out using differential equations of motion of a boundary layer over a smooth horizontal surface [11 ]: 
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The  boundary conditions on the wall and external boundary of the boundary layer are 

u 2 = v  2 = 0  at y = 0 ;  u 1-> U 1 at y-> oo. 
(2) 

On the phase interface - the line of discontinuity of physical properties of the medium - relations obtained 

from the laws of conservation of momentum and mass should be satisfied. In calculations of the flow of the two- 

phase boundary layer by Eqs. (1) with boundary conditions (2), following [7, 9, 11 ], the following assumptions 

were used: the flow of the smooth film is steady; for the range Refm = 0 - 8 0  the film can be assumed to be smooth 

in a first approximatiion; the flow of the phases occurs without heat transfer, phase transitions, or mass transfer 

through the phase interface. 
The  condition of permeabil i ty of the phases has the form: v2 - u2d~2/dx = vl - u l d ~ 2 / d x  = 0. The  

momentum equation in the projection onto the normal the n - n  to the interface is Pl = P2. The  momentum equation 

in the projection onto the tangent ~r to the interface is fZlOUl/Oy = ,u2Ott2/Oy. Absence of slip on the interface 

Ul = u2 is adopted as an additional condition. 
The conventional model of interaction of the phases stipulates that the effect on the averaged characteristics 

of the film be exerted in a single way, namely,  through the friction stress ~ on the interface. The  adopted model 

seems to be the simplest. It can be reduced to viscous interaction of two boundary layers with different viscosities 

and densities. 
The nonlinear system of equations (1) has been solved by the  gridpoint method with approximation in the 

form of an implicit six-point scheme [ 12 ] on the main integral rectangular and semi-integral grid. The  continuity 
equations are approximated by a four-point grid. A parabolic velocity distribution was assumed initially for the film 

and an "impact" velocity profile was assumed for the steam. A velocity profile close to a linear one was arrived at 

across the film by the method of successive approximations with boundary conditions (2). The shear  stresses across 

the film remained constant. 
The  suitability of the model adopted for the steam-film system in the range of Reynolds numbers indicated 

was verified using experimental data of [7 ] (Fig. 1, curves 1 -3 ) .  In the calculation Rerm E 4 0 - 2 0 0  and Rexs of 

the steam flow over the film were varied by varying the flow rate in the film and the Mach number  MI. Reasonable 

agreement of calculations using ~ = rc/rOc is observed in the range of Refm up to 8 0 -8 5 .  A fur ther  increase in Refm 

leads to divergence of experiments and calculations, and the model assumed becomes invalid. 
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Fig. 1. Plot of the local friction coefficient (a) and the average thickness of 

the film (b) versus the Reynolds  numbers  of the film and the steam: 

Rexs" 10-s: 1) 11.2, 2) 8.5, 3) 7.4, 4) 6.5, 5) 5.8, 6) 5.7, 7) 4.5, 8) 3.4, 9) 

2.6, 10) 2.4, 11) 2.1, 12) 1.9, 13) 1.6; I, II, III) laminar, transitional, and 

turbulent regions of the film flow. ~, m. 

Analysis of experimental data [7, 9 ] on the behavior of the local friction coefficient on the interface as a 

function of Refm and Rexs, estimated by measuring the friction stress on the wall in a nongradient flow (Fig. 2), 

has revealed the following characteristic regions for Refrn: I, Refm < 80--100;  1I, 40-100  < Refm < 380; II1, for 

various Rexs, 100 < Refm < 400. These regions characterize laminar, transitional, and turbulent flows in the film, 

respectively. Because of instability of the right-hand outer boundary of the transitional region, it is traced implicitly. 

For the majority of practical problems, including calculation of a two-phase flow (of wet steam) in passages 

of turbine stages, transitional and turbulent flows (II and l i d  are of definite interest. We will use the conventional 

model of phase interaction [9 ], where a liquid film flows over the surface of a passage under the action of steam. 
--+ + 

The  f i lm f low will  be c h a r a c t e r i z e d  by the  d i m e n s i o n l e s s  quan t i t i e s  u2 = u2 / v . ,  y = yp2v./ /z2,  a n d  
c5 + = ~pxv. / ,u  2 and the dynamic velocity v. = (ro/P2) 0"5. 

A two-layer model of turbulent viscosity will be taken for the transitional and initial turbulent two-phase 

flows. In the region of the viscous sublayer and the transitional zone (0 _< y+ _< 20) we will use the semiempirical 

equation [15]/ZTX//~ 2 = n~-~+y + [1 -- exp ( - - n~ -~y  +) ], where n2 = f(Rexs, Refm) is an empirical constant. For the 
tu rbu len t  region of the film flow, located over the viscous sublayer ,  we will use the P rand t l  equation 

2 +2 r  + 
~T2/f12 = K2Y all 2 / a y  , where to2 ---- 0.4 is the turbulence constant. 

The dynamic velocity v. is taken as the scale of fluctuation velocities for the steam part of the wall layer. 

The change in the turbulence scale e was determined from the adopted logarithmic profile of the velocity of the 
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Fig. 2. Velocity profiles in the film versus Reynolds numbers of the film and 

the steam [71: a) Refm = 187, Rexs = 10.5. 105; b) Refm = 195, Rexs = 1.9. 105; 
1, 2) calculation: 1) Rexs = 9.01"105, 2) 2.1.105. 

steam over the film [9 ]. The ratio of the local friction stress r 1 to the friction stress on the interface T w was found 

in the form of the polynomial [13 ] 

T 1 / r  w = a + a' ( y l / ~ l )  + a" (y l /~ l )  2 . (3) 

The coefficients of the polynomial were determined from the boundary conditions: Yl = 0; u 1 = Uw; v 1 = Vw; Yl = 

~1; ul = U; zl = 0. Solution of Eq. (3) with the boundary condictions adopted gives the values of the coefficients of 

the polynomial: a -- 1; a'  = (c31Pl/Zw) [(UlOUl/aX)  l w + (VlOUl/Oy) l w]; a "  -- - ( a  + a'). 
The total viscosity of the steam component of the flow fi'l was estimated by superposition of the molecular 

viscosity/~1, the viscosity/Z'T1 determined by the distance from the average surface of the film ~2, and the turbulent 

viscosity bt"T1 determined by the wavy roughness of the surface of the liquid film [14]: fi'l = fll q"/z'Wl q- ~ " T 1 .  

With account for the dimensionless characteristics u~- and y~-, the expression for �9 will be given in the form 

T1/'CW = (1 + flT1//A1) O U l / O y :  . (4) 

We will introduce a term modeling vortex formation due to the wavy surface of the film f2 [15 ], and assuming no 

laminar sublayer over the film, we obtain 

/ZT1//~I = (tClY~- q- f2) ~ I / T w  " 
(5) 

With the boundary conditions y~- -- 0 and u~- = u +, integration of Eq. (4) with (5) and neglect of the molecular 

viscosity/Xl give 

+ -1  + (6) 
Ul =/<1 l n ( x l Y ?  + f 2 ) f ;  1 q- ttw" 

Use will be made of the velocity profile (Fig. 2) [9 ] measured over the film flowing over the plate. For the 

transitional flow region over the film we will use the relation 

+ -1  
u 1 = Ir 1 In y -I- D : D = f (Rexs, Refm ) . 

(7) 

At a distance from the f i lm  tCly~- >> f2. Neglecting f2 compared to  tcly~-, f2  will be estimated from Eqs. (6) and (7): 
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Fig. 3. Effect of the Reynolds number of the film and the steam flow on the 

friction of the steam on the film surface: 1-3)  calculated from Eqs. (1): 1) Rexs 

= 6.19.10 s, M] = 0.44; 2) Rexs = 8.1.10 s, M1 = 0.63; 3) Rexs = 9.2.10 s, M1 = 

0.84; 4 - 7 )  [7 ]: Rexs" 10s: 4) 4.5; 5) 5.9; 6) 8.5; 7) 11.2; 8 -11)  calculated from 

Eqs. (10): 8) Rexs-10-5 = 9; 9) 10; 10) 6; 11) Rexs-10 - 5 =  1.5. 

f 2  = K1 exp [K 1 ( U ;  - -  D )  I .  (8) 

Substituting Eq. (8) into Eq. (5), we obtain 

f 4- 
(Uw + 

1 (9) 
/ * T I / / Z l  = t K l Y l  ' + /r exp [/t: 1 - -  D)] l '~l / ' t ;w.  

Numerical solutiom of boundary layer equations (1) and (2) was carded out for the transitional and initial 

turbulent regions Refm E ( 4 0 - 8 0 ) - 5 0 0  with transformation of the coordinate system: 

for the s team ~1 --X; r]l =In  (1 +yl/t~lA1); 

for the film ~2 = x; ~/2 = In (1 +y2/Q~2A2). 

With the new coordinate system it was possible to carry out calculations with a constant step and the same number 

of points in the transverse direction with a change in 31 and c~2. The calculational equations for the steam (i = 1) 

and the film (i = 2) were represented in the form 

pi { (Api exp 2 OUi [ rli ) u i O~ i + viAl~3 i exp r/i -- u.zA/2 (exp r/i - 1) x 

da. dh ~i] o.~} o ( o~., 
(10) 
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Ai (exp ~li) 3i O-~i - Ai (exp rli - 1 ) - ~ / + ~ /  ~ + ~ = 0 ;  

i = 1 for y > ~2; i = 2 for 0 < y _< ~2. For the film h = 0; for the steam h = ~2. 

The boundary conditions and the expression for/7 were transformed accordingly. Equations (10) were 

solved by overall factorization. Lacking factorization coefficients were found from the condition ~wl = 7:w2- After 

each iteration the thickness of the film was corrected for nonlinearity with the condition that the film flow rate was 

constant. The calculation method used allowed us to determine the thickness of the boundary layer 5t without 

using iteration and to obtain the sufficiently smooth function 51 =f(x). 

The results calculated in the considered range of Rexs and Refm were compared with experimental data of 
[9] (see Fig. 3). For Refm E 80-350 and Rexs = 11.2.105, points 7 and calculated curve 9 agree quite well. 

Experimental data (points 6) and calculations (curve 8) also agree fairly well at Rexs = (8.5-9) .  105. 

As the thickness of the film increased [12 ], the amplitude of the capillary waves on the surface of the film 
and the surface roughness of the interface increased. This can probably explain the scatter of experimental points 

at Refm > 350. At Refm > 350, calculated curves 8 and 9 follow Eq. (10), which corresponds to the scatter of 

experimental points. 
At lower Reynolds numbers Rexs < (5 -6 ) .  105 agreement of calculated and experimental data is not as 

good. As the Reynolds numbers Rexs decrease, in the two-phase wall layer the length of transitional region II is 

shortened with increasing Refm (see Fig. lb). The film thickness ~2 increases and the average liquid flow rate in 

the film decreases. As Rexs decreases and Refm increases, the absolute value of the local friction coefficient cf fm 

increases with tendency to decrease as Refin increases (Fig. la). From the aforesaid it is possible to suggest that 
the turbulent wave mechanism of friction on the interface of the film and the steam-droplet flow changed. Neglect 
of unsteady-state effects in the rough-film flow and some other hydrodynamic features, such as separation of 

droplets from the film, restructure of the capillary waves on the film, and changes in the dissipative component of 

the flow energy, leads to changes in the dependence of the total viscosity/7 of the steam flow and its components 
that is adopted in the calculations. The present calculation results were affected by the adopted analogy in the form 

of a "wall law" [7 ] of a fixed roughness as applied to a mobile and variable wavy surface in transitional and turbulent 

regions II and III (Fig. 1). In order to take account of the indicated features of the flow of the wall layers in the 

estimations, it is necessary to carry out special experiments for transitional and turbulent regions of the film. 

The present calculation method can be used for solution of a wide range of applied problems such as 

refinement of the boundary conditions on shaped surfaces of passages in turbomachines working with steam-gas- 

liquid flows, components of heat exchangers, ejectors, and other apparatus. 

C O N C L U S I O N S  

1. Estimation of parameters of a two-phase wall layer using suggested equations (10) gives agreement with 

exper iments  that is acceptable for engineering calculations [7, 9] at Rexs -- 6"105-11 "105 and  Refm 

E (40-80)-350 .  
2. The proposed method for calculating wall boundary conditions can be used to solve a wide range of 

applied problems in shaping passages in turbomachines operating with two-phase working fluids, in calculating 

surfaces of heat exchangers coated with a flowing film, etc. 
3. For Reynolds numbers of the steam component of a flow Rexs < (5-6) .  105 suitable results can be 

obtained by the proposed method only after further experiments to determine the total viscosity/7 of the two-phase 

wall layer. 

N O T A T I O N  

x, y, ~, ~/, coordinates; U, velocity of the steam flow; u, v, projections of the steam velocity vector U, onto 
the x, y axes; p, pressure; p, density; p, viscosity;/7, total (effective) viscosity; PT, turbulent viscosity; ~, friction 

162 



stress; ~, relative friction stress; r ,  n, turbulence coefficients; e, turbulence scale; f, dimensionless quantity modeling 

turbulization of the flow by a wavy roughness; D, experimental parameter; A, A1, A2, parameter, concentration 

parameters; ~2, 52, average thickness, thickness of the film; 61, thickness of the boundary layer; M, Mach number; 

Re, Reynolds number; v., dynamic velocity; u +, dimensionless velocity; y+, dimensionless coordinate; in Eq. (10) 

h = y - Yl, for the film h = 0, for the steam h = 62. Subscripts: for the steam i = 1; for the film i = 2; 0, value at 
the wall; w, value at the interface; - ,  averaging symbol; fm, film; xs, steam, value in the x direction. 
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